173 research outputs found

    Efficient Coding Tree Unit (CTU) Decision Method for Scalable High-Efficiency Video Coding (SHVC) Encoder

    Get PDF
    High-efficiency video coding (HEVC or H.265) is the latest video compression standard developed by the joint collaborative team on video coding (JCT-VC), finalized in 2013. HEVC can achieve an average bit rate decrease of 50% in comparison with H.264/AVC while still maintaining video quality. To upgrade the HEVC used in heterogeneous access networks, the JVT-VC has been approved scalable extension of HEVC (SHVC) in July 2014. The SHVC can achieve the highest coding efficiency but requires a very high computational complexity such that its real-time application is limited. To reduce the encoding complexity of SHVC, in this chapter, we employ the temporal-spatial and inter-layer correlations between base layer (BL) and enhancement layer (EL) to predict the best quadtree of coding tree unit (CTU) for quality SHVC. Due to exist a high correlation between layers, we utilize the coded information from the CTU quadtree in BL, including inter-layer intra/residual prediction and inter-layer motion parameter prediction, to predict the CTU quadtree in EL. Therefore, we develop an efficient CTU decision method by combing temporal-spatial searching order algorithm (TSSOA) in BL and a fast inter-layer searching algorithm (FILSA) in EL to speed up the encoding process of SHVC. The simulation results show that the proposed efficient CTU decision method can achieve an average time improving ratio (TIR) about 52–78% and 47–69% for low delay (LD) and random access (RA) configurations, respectively. It is clear that the proposed method can efficiently reduce the computational complexity of SHVC encoder with negligible loss of coding efficiency with various types of video sequences

    Enhanced Temperature Control Method Using ANFIS with FPGA

    Get PDF
    Temperature control in etching process is important for semiconductor manufacturing technology. However, pressure variations in vacuum chamber results in a change in temperature, worsening the accuracy of the temperature of the wafer and the speed and quality of the etching process. This work develops an adaptive network-based fuzzy inference system (ANFIS) using a field-programmable gate array (FPGA) to improve the effectiveness. The proposed method adjusts every membership function to keep the temperature in the chamber stable. The improvement of the proposed algorithm is confirmed using a medium vacuum (MV) inductively-coupled plasma- (ICP-) type etcher

    Effects of Single and Blended Coating Pigments on the Inkjet Image Quality of Dye Sublimation Transfer Printed Paper: SiO 2

    Get PDF
    In this study, we investigated the effects on the image quality of CaCO3, SiO2, talc, and sericite on coated inkjet paper. The papers serve as dye sublimation transfer paper for printing on fabrics. The brightness, smoothness, and contact angle of the coated papers were evaluated. The papers were then printed with a textile color image evaluation test form, and the imprinted images were evaluated with respect to six criteria of the solid ink density, tone value increase, print contrast, ink trapping, grayness, and hue error. The overall printed image quality was correlated with the smoothness and brightness of the coated paper but showed no correlation with the contact angle. For single-pigment-coated papers, CaCO3 produced paper with the best color difference performance and could be substituted for silica. On the other hand, SiO2 was found to be suitable for blending with talc, calcium carbonate, and sericite, and its combination with these materials generally produced better image qualities than silica alone. Talc and sericite, when blended with silica as composite coating pigments, produced better printed image qualities than those as single-pigment-coated papers. The overall image quality ranking suggests that the best performance was achieved with CaCO3-, SiO2/talc-, CaCO3/SiO2-, SiO2/sericite-, and SiO2-coated papers

    Optimized ultrasound-assisted extraction of phenolic compounds from Polygonum cuspidatum

    Get PDF
    In this study the phenolic compounds piceid, resveratrol and emodin were extracted from P. cuspidatum roots using ultrasound-assisted extraction. Multiple response surface methodology was used to optimize the extraction conditions of these phenolic compounds. A three-factor and three-level Box-Behnken experimental design was employed to evaluate the effects of the operation parameters, including extraction temperature (30-70 °C), ethanol concentration (40%-80%), and ultrasonic power (90-150 W), on the extraction yields of piceid, resveratrol, and emodin. The statistical models built from multiple response surface methodology were developed for the estimation of the extraction yields of multi-phenolic components. Based on the model, the extraction yields of piceid, resveratrol, and emodin can be improved by controlling the extraction parameters. Under the optimum conditions, the extraction yields of piceid, resveratrol and emodin were 10.77 mg/g, 3.82 mg/g and 11.72 mg/g, respectively

    Nonlinear and conventional biosignal analyses applied to tilt table test for evaluating autonomic nervous system and autoregulation

    Get PDF
    Copyright © Tseng et al.; Licensee Bentham Open. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.Tilt table test (TTT) is a standard examination for patients with suspected autonomic nervous system (ANS) dysfunction or uncertain causes of syncope. Currently, the analytical method based on blood pressure (BP) or heart rate (HR) changes during the TTT is linear but normal physiological modulations of BP and HR are thought to be predominately nonlinear. Therefore, this study consists of two parts: the first part is analyzing the HR during TTT which is compared to three methods to distinguish normal controls and subjects with ANS dysfunction. The first method is power spectrum density (PSD), while the second method is detrended fluctuation analysis (DFA), and the third method is multiscale entropy (MSE) to calculate the complexity of system. The second part of the study is to analyze BP and cerebral blood flow velocity (CBFV) changes during TTT. Two measures were used to compare the results, namely correlation coefficient analysis (nMxa) and MSE. The first part of this study has concluded that the ratio of the low frequency power to total power of PSD, and MSE methods are better than DFA to distinguish the difference between normal controls and patients groups. While in the second part, the nMxa of the three stages moving average window is better than the nMxa with all three stages together. Furthermore the analysis of BP data using MSE is better than CBFV data.The Stroke Center and Department of Neurology, National Taiwan University, National Science Council in Taiwan, and the Center for Dynamical Biomarkers and Translational Medicine, National Central University, which is sponsored by National Science Council and Min-Sheng General Hospital Taoyuan

    Analysis of Surgically Treated Intraspinal Tumors in Southern Taiwan

    Get PDF
    The medical records of 117 patients with spinal tumors who underwent surgery with pathologic confirmation from January 1999 to April 2004 at Kaohsiung Medical University Hospital were reviewed. Data from this review were compared with those obtained from the same institution 10 years earlier (covering the period 1988-1995) and from other reported series. There were 69 male and 48 female patients aged from 13 to 87 years old (mean age, 51.9). The most common pathologic findings were metastasis in 45.3% (53/117), nerve sheath tumors in 28.2% (33/117), menin-giomas in 12% (14/117) and neuroepithelial tumors in 6% (7/117). The peak ages at diagnosis were 41-50 years and 61–70 years. A slight male predominance was noted for all tumors, except meningiomas. Motor weakness, even paralysis, was the major clinical presentation (64–86%), followed by sensory deficits (50%) and pain (42%). The location of tumors was most often in the thoracic (50.4%; 59/117), lumbosacral (27.4%; 32/117) and cervical spine (22.2%; 26/117) segments. Among the metastatic tumors, the lung (22.6%) and breast (15.1%) were the most common primary sites of origin, followed by unknown origin, the liver (hepatocellular carcinoma), the gastrointestinal tract and the nasopharynx (nasopharyngeal cancer)

    Establishing a risk scoring system for predicting erosive esophagitis

    Get PDF
    SummaryObjectiveThis study aims to establish a noninvasive scoring system to predict the risk of erosive esophagitis (EE).MethodsFrom 2002 to 2009, a total of 34,346 consecutive adults who underwent health check-ups and upper gastrointestinal endoscopy were retrospectively enrolled. Of the participants, 22,892 in the earlier two-thirds period of examination were defined as the training set and the remaining 11,454 as the validation set. EE was diagnosed by upper gastrointestinal endoscopy. Independent risk factors associated with EE were analyzed by multivariate analysis using a logistic regression model with the forward stepwise selection procedure in the training set. Subsequently, an EE risk scoring system was established and weighted by β coefficient. This risk scoring system was further validated in the validation set.ResultsIn the training set, older age, male gender, higher body mass index, higher waist circumference, higher serum triglyceride, and lower high-density lipid cholesterol levels were independent risk factors for predicting EE. According to the β coefficient value of each independent risk factor, the total score ranging from 0 to 10 was established, and then low- (0–3), moderate- (4–6), and high-risk (7–10) groups were identified. In the validation set, the prevalence rates of EE in the low-, moderate-, and high-risk groups were 5.15%, 15.76% and 26.11%, respectively (p < 0.001).ConclusionThis simple noninvasive risk scoring system, including factors of age, gender, body mass index, waist circumference, triglyceride, and high-density lipid cholesterol, effectively predicted EE and stratified its incidence

    The TOP-SCOPE Survey of PGCCs: PMO and SCUBA-2 Observations of 64 PGCCs in the Second Galactic Quadrant

    Get PDF
    In order to understand the initial conditions and early evolution of star formation in a wide range of Galactic environments, we carried out an investigation of 64 Planck Galactic cold clumps (PGCCs) in the second quadrant of the Milky Way. Using the (CO)-C-13 and (CO)-O-18 J = 1-0 lines and 850 mu m continuum observations, we investigated cloud fragmentation and evolution associated with star formation. We extracted 468 clumps and 117 cores from the (CO)-C-13 line and 850 mu m continuum maps, respectively. We made use of the Bayesian distance calculator and derived the distances of all 64 PGCCs. We found that in general, the mass-size plane follows a relation of m similar to r(1.67). At a given scale, the masses of our objects are around 1/10 of that of typical Galactic massive star-forming regions. Analysis of the clump and core masses, virial parameters, densities, and mass-size relation suggests that the PGCCs in our sample have a low core formation efficiency (similar to 3.0%), and most PGCCs are likely low-mass star-forming candidates. Statistical study indicates that the 850 mu m cores are more turbulent, more optically thick, and denser than the (CO)-C-13 clumps for star formation candidates, suggesting that the 850 mu m cores are likely more appropriate future star formation candidates than the (CO)-C-13 clumps
    • …
    corecore